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Abstract

We describe a finite-state analysis of the mode-sequencing requirements for the Con-

tingency Three-Engines-Out Guidance function of the Space Shuttle flight control sys-
tem.
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Chapter 1

Introduction

The project documented in this report was undertaken in the context of a research pro-

gram in formal methods [BCC+95] and forms part of a study intended to demonstrate

that formal specification and verification can enhance the clarity, precision, and compre-

hension of requirements specifications for space applications. The project has focused

on the mode-sequencing requirements for Contingency Three-Engines-Out (3E/O), a

function of the contingency guidance component of the Space Shuttle flight-control sys-

tem. The analysis and accompanying documentation are presented here in two chapters:

the first containing an informal description of the 3E/O requirements and the second

containing a discussion of the finite-state analysis of these requirements. A final chapter
summarizes our work and considers directions for future research.

1.1 Motivation

Although the quality of Space Shuttle flight software is generally regarded as exemplary

among NASA software development projects, much of the quality assurance activity

in early lifecycle phases remains a manual exercise lacking well-defined methods or

techniques [NASA93, p. 22]. Shuttle flight software is complex and life-critical. Software

upgrades to accommodate new missions such as the recent MIR docking, new capabilities

such as Global Positioning System navigation, and improved algorithms such as the

newly automated three-engine-out contingency abort maneuvers (3E/O) are continually

introduced. Such upgrades underscore a need recognized in the NASA community

and in a recent assessment of Shuttle flight software development, for "state-of-the-

art technology" and "leading-edge methodologies" to meet the demands of software

development for increasingly large and complex systems [NAS93, p. 91]. The 3E/O

project described in this report represents an attempt to explore productive tools and

pragmatic strategies to address this need.
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1.2 Acknowledgments

The informal description of 3E/O, and the finite-state analysis that follows, are based

on our interpretation of the requirements documented in [Roc94]. We have derived our

understanding of these requirements from this document, a short note on 3E/O region

selection by Bill Kanfman (Loral), and from several discussions with Ron Avery (Loral),

who offered valuable insight into the occasionally inscrutable requirements document

and provided detailed comments on an earlier draft of this report. David Hamilton

(formerly with Lord) initially identified 3E/O as a potentially interesting application

and provided access to documentation and 3E/O expertise during early phases of the

work. The guidance provided by John Rushby (SRI) and by our technical monitor, Rick

Butler (NASA Langley Research Center), was also extremely valuable. Naturally, we

take the blame for any misconceptions that remain. We hope that by giving a precise

specification of our understanding, those with greater familiarity and understanding of

the true requirements will be able to identify our errors and help us develop a precise,

understandable, and accurate analysis that will inform future applications of formal

methods to space applications, as well as future use and modification of [Roc94].



Chapter 2

Informal Description of

Three-Engines-Out

The informal description of 3E/O covers three topics: general background providing an

overview of the Space Shuttle's physical structure and contingency abort procedures,

3E/O functionality including a more detailed description of the two main 3E/O Contin-

gency Guidance functions, and a final section on the process currently used to analyze

Space Shuttle flight software requirements.

We begin with an informal description of the requirements document itself. Shuttle

flight software requirements are documented as Functional Subsystem Software Require-

ments (FSSRs)-- low-level software requirements specifications written in English prose

with strong implementation biases, typically including material in the form of pseudo-

code, tables, digrams, or flowcharts. The 3E/O requirements specification is written

largely in English prose and pseudo-code, accompanied by tables and by flowcharts

diagrammed in a notation unlike any used elsewhere in the modern computer science

literature. For example, the control flow proceeds both forward and backward in these

diagrams. In the worst case, it may be necessary to trace the control flow forward

through multiple pages and then backward through these same pages to define a single

path from entry to exit. Although the prose, tables, and flowcharts are generally con-

sistent, all three have undergone five modifications - documented in-line - resulting in

layers of annotation that can be difficult to unravel.

2.1 Background

The Space Shuttle mission profile distinguishes six main flight phases: ascent, orbit

insertion, orbit, deorbit, entry, and abort, each of which is further divided into two to

four flight modes and controlled by software systems referred to as "Digital AutoPilots"

(DAPs). The Ascent and Transition DAPs provide guidance, navigation, and control
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(GN&C) for the Space Shuttle during powered flight. Put simply, the navigation func-

tion determines where the Shuttle is, guidance determines where it should go next, and

the control function determines how to get it there. Predictably, specific GN&C func-

tions vary with respect to mission phase; for example, while guidance target parameters

related to launch site are crucial during the ascent phase, they are irrelevant during the

on-orbit phase. The Space Shuttle is propelled into orbit by two solid-fuel rocket boost-

ers (SRBs) and three rocket engines (Space Shuttle Main Engines or SSMEs) that are

fueled by an external tank (ET), with additional thrust for orbital insertion provided by

the Orbital Maneuvering System (OMS) and the Reaction Control System (RCS). The

SRBs burn out and are jettisoned approximately two minutes into flight. The SSMEs

are shut off and the external tank jettisoned prior to stable-orbit insertion; the exact

ascent profile varies depending on tradeoffs including where the ET is likely to land.

For example, direct insertion using only the SSMEs means that the ET is carried to a

higher apogee, increasing the possibility of an inopportune landing, whereas Main En-

gine Cutoff (MECO) followed by an OMS burn lessens the danger that the ET will land

in a populated area. In any case, powered flight refers to the SSME-powered ascent and

transition phases in a nominal ascent and to the SSME-powered ascent phase associated

with a mission abort and Return to Launch Site (RTLS). 1

RTLS is one of four types of intact ascent aborts and is used if one or more of the

SSMEs fail during the first 4 minutes and 20 seconds of flight. As the name suggests,

the Shuttle reverses flight direction and returns to the launch site. The other three

abort options are: transoceanic abort landing (TAL), abort to orbit (ATO), and abort

once around (AOA). TAL is an emergency landing at a European or North African

Airport, chosen on the basis of launch azimuth and ascent profile. TAL is an option

when a velocity greater than 4,000 mph has been reached and is generally preferred to

an RTLS, if both options are available. The conditions under which an RTLS versus

a TAL abort are required can be diagrammed as shown in Figure 2.1. The minimum

and maximum velocities referred to in the figure are "I-loads," i.e., software constants

that are (re)calculated for each mission. The maximum altitude referred to is calculated

each guidance cycle as a function of apogee altitude, velocity, and I-load values. The

arrows indicate values above(below) the thresholds defined by the given conditions.

AOA, which is more desirable than TAL, is used when one or two SSMEs fail after

the SRBs burn out, but too early in the ascent for an ATO, which becomes an option

if SSME failure occurs late in the ascent. The orbit achieved during ATO is typically

lower than the nominal orbit, requires less performance, and provides time to evaluate

the situation and decide on an alternative mission plan.

The four types of intact ascent aborts (summarized above) all use the Shuttle's OMS

and RCS systems and, as the name suggests, assume that there is a reasonable chance

for an intact abort. The 3E/O case is different because if all three SSMEs fail, the

IThe terminologyispotentiallyconfusing.The RTLS abortclearlyinvolvesdescentratherthan
ascent;the(mission)phasename reflectsthefactthatan RTLS abortisinitiatedundercontrolofthe
AscentDAP.
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normal ascent

maximum velocity for RTLS abort

#
RTLS abort (too much energy for TAL abort)

#
maximum altitude tolerable without exceeding 3.5g acceleration m

TAL abort

minimum velocity for TAL abort

RTLS abort

Figure 2.1: 3E/O Conditions for RTLS and TAL Aborts

chance of an intact abort is virtually nil. Nevertheless, a 3E/O abort invokes RTLS for

two reasons. First, the Glide RTLS DAP is the only DAP designed to handle no-engine
maneuvering of the combined orbiter and ET in the atmosphere; second, the RTLS DAP

contains support software that provides the safest possible conditions for crew bailout. 2

The Shuttle can move in six axes: three translational axes: X, Y, Z, and three ro-

tational axes: roll, pitch, and yaw. Movement is achieved using two powerful OMS

engines, 38 primary RCS jets (also called thrusters), and six vernier RCS jets. The

OMS engines are used for major orbital maneuvers, and to provide control in the trans-

lational axes, with additional, finer control provided by the primary RCS jets. Smaller

maneuvers use only the RCS jets. Translational maneuvers use the primary RCS jets

and rotations normally use the vernier RCS jets. During contingency abort maneuvers,

as well as normal ascent, RCS jets are used to safely maneuver the Shuttle away from

the ET after separation. Since the Shuttle is considerably lower in the atmosphere,

more RCS jets are needed for an RTLS ET separation than for a nominal or TAL ET

separation. An RTLS abort typically requires dumping OMS and RCS fuel to improve

maneuverability and reduce landing weight, which is accomplished by firing the OMS
and RCS engines.

2.2 Contingency Three-Engines-Out

Contingency Three-Engines-Out is a low-level Ascent DAP and RTLS guidance function

responsible for monitoring ascent parameters and, if three SSMEs fail sequentially or

2We are grateful to Ron Avery for clarifying the use of RTLS in the 3E/O ease.
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simultaneously, calculating and commanding the appropriate ET separation and entry

maneuvers if an RTLS abort is necessary. In certain situations, 3E/O is also responsible

for auto contingency maneuvers resulting from the failure of two SSMEs (2E/O). For

example, 3E/O takes over when a main engine cut-off is commanded during a 2E/O

contingency maneuver. 3E/O is executed repeatedly at specified intervals that range

from 1.92 seconds between SRB separation and MECO confirmed, to 0.16 seconds after

MECO confirmed or during a pre-SRB ("first-stage") ET separation. Each execution of

3E/O is part of a guidance cycle that remains active during powered flight until either

an RTLS contingency abort is required or progress along the powered flight trajectory

is sufficient to allow a normal ET separation even if three SSMEs fail.

The contingency 3E/O function consists of two main subfunctions: a region-select

function that selects a contingency-maneuver mode based on the values of ascent pa-

rameters, and a contingency guidance function that is used strictly for display if the

ascent is normal, but is responsible for calculating and commanding initial RTLS abort

maneuvers determined by the selected region if an RTLS contingency arises. Note that

the maneuvers calculated and commanded by the two 3E/O functions may differ from

one guidance cycle to the next in response to changes in the external environment or in
the Shuttle's internal state.

2.2.1 3E/O Region Selection

The ascent parameters monitored by 3E/O include dynamic pressure, altitude, altitude

rate, velocity, range, and angle of attack. The value of these parameters, the flight

phase, and a small number of commands passed down from higher-level control func-

tions as flags (e.g., high_rate_sep) together determine the Shuttle's current contingency

maneuver region. There are six possible regions, each associated with a particular type

of abort maneuver. The maneuvers differ largely with respect to timing, angle of attack

(a) and sideslip (_) necessary for safe separation of the external tank. Each of the

six regions is associated with a unique color used to display the mode to the crew on

the Shuttle's trajectory display. The color reflects either normal ascent (blank) or the

relative severity of the contingency, although normal ascent is typically not displayed

until roughly six minutes after SRB separation, i.e., approximately a minute before

MECO. The six maneuver regions are usually denoted by an index, i, where 0 < i < 4

or i = 102. 3 Table 2.1 summarizes each of the six regions, including its associated color

and index, the conditions under which Main Engine Cut-Off (MECO) occurs, and the

corresponding ET separation maneuver. The table is based on notes by Bill Kaufman

(Loral), and anticipates discussion (in Section 2.2.2) of the 3E/O Contingency Guidance

function. Only five of the six regions discussed here can actually be assigned during

SRegion index values illustrate one of several apparent notational inconsistencies in the requirements
document. The index value 102 reflects the mode corresponding to a 3E/O contingency prior to SRB
separation, i.e., during flight mode 102. None of the other region index values correspond to flight
modes.



2.2. Contingency Three-Engines-Out 7

3E/O region selection; region 4 is assigned by 3E/O Contingency Guidance after trying

and failing to execute a region 3 maneuver.

color index MECO conditions ET separation maneuver

blank 0 Normal No maneuver necessary.

blue 102 SRBs still attached. Separate during SRB tailoff.

yellow 3 Dynamic pressure high, and Maneuver to a = -4 deg,

not expected to drop. /3 = 0 and establish

acceptable pitch, yaw, roll rates.
red 4

orange 2

green 1

Region 3 maneuver started after

MECO, but dynamic pressure

too high for RCS jets to perform

desired pitch-down maneuver.

Fairly high angle of attack and

moderate dynamic pressure, or

high-rate separation commanded

by higher-level function.

No high-rate separation command

and not yet past apogee, or

either c_ or dynamic pressure

is fairly low.

Separate immediately if c_ ,_ 0

& pitch, yaw, roll rates acceptable.

Pitch up to a _ 125 deg, establish

small pitch, yaw, roll rates

with pitch rate negative,

then separate.

Maneuver to/3 = 0.

When/3, yaw, and roll rates

small, establish -4 deg/sec

pitch rate, then separate.

Attitude-independent separation;

separate at earliest safe

time after null pitch, yaw,

and roll rates achieved.

Table 2.1: Summary of 3E/O ET Separation Maneuver Regions

When a region other than 0 is assigned and MECO has been confirmed, a contin-

gency abort flag is set and 3E/O switches from display support to a guidance function

responsible for calculating and commanding the necessary abort maneuvers. We turn

now to the details of this guidance function.

2.2.2 3E/O Contingency Guidance

The primary tasks of 3E/O Contingency Guidance are to command the dissipation of

excess fuel before and after ET separation, calculate the angle of attack and pitch rate

for ET separation, monitor the -Z translation used to maneuver the Shuttle away from

the ET after separation, calculate an angle of attack for entry, command the transition

to the glide phase of the RTLS abort, and oversee the timing and sequencing of all of

the above each guidance cycle during a contingency abort. The calculations mentioned

here actually compute quaternions, four-element matrices that define coordinate trans-

formations. For example, the quaternion calculated for the ET separation maneuver

commands zero sideslip and the current bank angle, as well as the angle of attack. As

Table 2.1 suggests, the characteristics of the maneuver commanded by the quaternion,

as well as the sequence and timing of events, vary depending on the maneuver region

dictated by prevailing conditions and ascent status.
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2.2.2.1 Pre-ET Separation Maneuver for Region 102

The primary consideration for first-stage (i.e., flight mode 102) aborts is sequencing the

pre-separation maneuvers with SRB tailoff, i.e., using up remaining SRB propellant.

Once the SRB chamber pressures fall below an I-loaded-value indicating that enough of

the propellant has been consumed, ET separation is commanded. Prior to separation, if

the Shuttle's altitude is sufficient to permit a dump of OMS fuel, a one-time only firing

of the OMS engines is commanded. No further attitude maneuvers are commanded

prior to separation for region 102, because atmospheric density and dynamic pressure

are too high to safely maneuver without risking the structural integrity of the shuttle.

2.2.2.2 Pre-ET Separation Maneuvers for Regions 3 and 4

The primary concern for region 3 aborts is high dynamic pressure, which can cause

aerodynamic moments to exceed the ability of the RCS jets to perform the pitch-down

to a near-zero angle of attack. If this occurs, the region is switched from 3 to 4,

the pitch rate is zeroed, and a region 4 quaternion is calculated. Otherwise, a region

3 quaternion is calculated, commanding the near-zero angle of attack, along with a

slight pitch rate (to compensate for flight-path angle rotation). When the appropriate

pre-separation maneuver has been completed, ET separation is initiated. Since these

calculations are repeated each guidance cycle, the switch from region 3 to region 4 can

occur at any point after an I-loaded amount of time has elapsed prior to ET separation.

If control limitations prevent the simultaneous satisfaction of all necessary parameters

- in this case, angle of attack, sideslip, and body rates (i.e., pitch, yaw, and roll rates)

- separation is commanded as soon as the angle of attack (the most crucial parameter

for the separation maneuver) equals or exceeds an I-loaded threshold.

2.2.2.3 Pre-ET Separation Maneuvers for Regions 1 and 2

Region 2 aborts are referred to as "high-rate separation maneuvers" and are used when

the Shuttle is coming down with a fairly high angle of attack and the dynamic pressure

is moderate, or when a higher-level control function commands a region 2 maneuver to

accommodate the transition from a 2E/O to a 3E/O guidance function. The quaternion

calculated each guidance cycle when a region 2 abort is in progress establishes zero

sideslip. When yaw and roll rates are small, a -4deg/sec pitch rate is commanded.

Under certain conditions, the time required to zero the sideslip is sufficiently long that

dynamic pressure builds to unsafe levels. Under these circumstances, if a region 2

abort has not been explicitly commanded, the region is switched from 2 to 1 and an

attitude-independent separation maneuver is begun immediately. Otherwise, the pitch

rate maneuver is begun as soon as sideslip is below an I-loaded threshold and yaw and

roll rates are acceptably small. Separation is commanded as soon as the difference

between the desired and established pitch rates is acceptably small, or when too much

time has elapsed since sideslip was zeroed.
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As noted above, region 1 separation is attitude independent, i.e., there is no attempt

to modify the Shuttle's attitude prior to separation, which is commanded after body

rates have become acceptably small and dynamic pressure has dropped to a safe value. If

the rate of descent is too great or too little time remains for a maneuver to entry attitude,

then separation is initiated immediately after body rates and dynamic pressure reach

safe values. Otherwise, up to 14 seconds are allowed to permit the RTLS separation

sequence to complete.

2.2.2.4 Post-ET Separation Maneuvers (All Regions)

The post-separation maneuver sequence is identical for all five abort regions. Imme-

diately after ET separation, a -Z translation is commanded to maneuver the Shuttle

away from the ET 4. When this translation has been completed, excess OMS propellant,

if any, is burned by firing the two OMS engines and selected aft RCS jets. RCS and

OMS jets are interconnected for this (and other) purposes via a series of valves that can

be configured either automatically or manually. The venting of excess OMS propellant

occurs exactly once in the post-ET maneuver sequence for regions 1-4, but is not used

in region 102; the time between the pre- and post-separation dumps in a first-stage

abort may not be sufficient to satisfy OMS/RCS system constraints. When the RCS

jets become available following the OMS/RCS interconnect (if any), an entry-attitude

quaternion is commanded, establishing level wings, zero sideslip, and an angle of attack

based on the Shuttle's current relative velocity. The final step in the post-separation

sequence is to command an automatic transition to the glide phase of RTLS abort as

soon as attitude and body rates reach acceptable ranges or dynamic pressure exceeds
an I-loaded threshold.

2.3 The Existing Requirements Analysis Process

The process used to develop shuttle flight-software requirements documents typically

yields a textual description, possibly accompanied by diagrams such as data-flow di-

agrams, state charts, or object diagrams. If diagrammatic material is provided, it is

considered secondary; the primary requirements document is the informal English de-

scription. This phase is followed by the development of high-level test plans and product

assurance activities, including Fagan-style inspections [Fag76,Fag86] of both the require-

ments and the test plan. Both the requirements and the test plan also undergo a baseline

review before work on lower-level engineering products is allowed to proceed.

Since the 3E/O document we are working from is a Change Request (CR) [Roc94],

the similarly well-defined process for modifying an existing requirements document is of

4A -Z translation moves the Shuttle downward along the Z axis, which runs parallel to the Shuttle
plane of symmetry, and perpendicular to the X axis, which runs parallel to the Shuttle body, with the
Y axis completing the right-handed orthogonal system.
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particular interest. The process begins when an engineer writes a requirements Change

Request (CR), documenting modifications to a Shuttle flight software system. A CR

typically goes through several drafts with the author interacting primarily with the

Requirements Analyst (RA) responsible for the given software (sub)system. When

the author and RA agree that the CR correctly captures the requirements, the CR is

submitted to a review board. The CR is then prioritized along with other CRs for

consideration during a formal review conducted by a group of RAs. The formal review

process includes the following:

Preparation of an engineering assesment including a summary, of the proposed

change, a justification, and an analysis of its potential impact on the software

system.

Detailed analysis of the CR guided by a Requirements Inspection Checklist con-

taining generic error categories. Errors found are documented on an Issue Form.

One or more Formal Inspections of the CR, as needed (depending on factors such

as CR size and complexity), conducted by a team consisting of the CR author,

RA, developer, verifier, etc., to review issues found during analysis, to compile

a list of items that must be investigated before implementation of the CR may

procede, and to insure that all participants have a consistent understanding of the

requirements.

• Tracking and resolution of all outstanding issues.

• Baselining; when all issues have been resolved ("closed"), the CR is baselined and

scheduled for implementation.

Collection and analysis of quality metrics, primarily the number of issues detected

during inspection and the number of problems encountered after the requirements

evaluation (RE) phase. The ratio of the former to the later yields a rough quality

metric (the "process error rate") for RE.

Although the processes sketched here for both the initial development and the mod-

ification of requirement documents - including ongoing quality assurance activities -

are considered effective, [NASA93, pp. 9,22] notes the limitations paraphrased below:

• Current techniques are largely manual and highly dependent on the skill and

diligence of individual inspectors and review teams.

• There is no methodology to guide the analysis process, no structured way for RAs

to document their analysis, and there are no completion criteria.

Although these techniques catch a substantial number of defects, the density of

defects found during requirements analysis suggests that many errors escape de-
tection.
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• NASA projects using currently-available techniques have reached a quality ceiling

on critical software subsystems, suggesting that innovations are needed to reach

new quality goals.

These limitations contribute a significant part of the rationale for exploring the use
of formal methods - including the state exploration technique described below - as a

strategy for complementing and enhancing the existing requirements analysis process.





Chapter 3

Formal Analysis of Contingency

3E/O Sequencing

The series of sequential maneuvers described in the informal description of 3E/O can

be viewed as mode-sequencing, i.e., conditioned events or behaviors that occur in an

order prescribed by the satisfaction of one or more constraints. Characterizing the

constraint satisfaction that defines the permissible sequences of mode transitions is

sometimes referred to as a mode-sequencing problem. Abstracting the 3E/O algorithm

to its most basic precepts yields just such a series of sequential steps conditioned, in this

case, by a context consisting of variables representing the Shuttle's external (physical)

environment and internal state. As such, 3E/O is too procedural to be a good candidate

for the type of formal specification and proof supported by systems like PVS [ORSvH95],

but can be quite naturally modeled as a finite-state system. This observation led us

to wonder whether the type of mode-sequencing exemplified by 3E/O could be verified
most effectively using finite-state analysis techniques. 1

3.1 Finite-State Verification Techniques

Finite-state verification techniques, described in [ZWR+80, CG87, BCM+92, Kur93,

McM93], have been around in one guise or another since at least the late 1970's. These

techniques were first used for verifying protocols (described as a collection of commu-

nicating finite-state machines) and have been applied almost exclusively to hardware

or software implementation of control algorithms such as communication [HK90, Sha93]

and cache coherence protocols [ID93]. Although to our knowledge, no previous attempts

1The quaternion calculations are the only computational component of 3E/O. Although these calcu-
lations constitute an important 3E/O output, the matrix manipulations involved are relatively simple,
well understood operations. We model quaternion calculation with (only) enough granularity to ensure
that a quaternion value is appropriately assigned, but otherwise focus exclusively on basic sequencing
properties.

13
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have been made to apply finite-state verification techniques to the type and scale of

mode-sequencing problem described here, the approach seemed worth exploring. The
rationale is as follows.

Like most fault-handling logic, 3E/O consists largely of mode switching and excep-

tion handling. The input and state spaces of these types of applications tend to lack a

regular and easily characterizable structure and there is typically little or no algorithmic

complexity. Typechecking and proof of invariants to establish correctness of functional

requirements are therefore not well-suited to fault-handling applications. The simplest

way to validate these systems is to enumerate the entire input and state spaces by brute

force. While this is rarely practical--the state space of most applications of interest

is far too great to make such brute force enumeration feasible--it is often possible to

"downscale" the state space of an application to a fairly small finite size and still retain

the essential behaviors of the original system. 2 The properties to be checked are gener-

ally specified as explicit assertions or as error-checks programmed into the component

specifications. Since this approach checks that all reachable states satisfy the given

properties, it is also referred to as "reachability analysis."

3.2 Modeling Issues and Strategy

As noted above, the 3E/O algorithm consists of a series of sequential maneuvers that

are readily modeled as a finite-state machine. The only real difficulty derives from the

number and characteristics of the input variables. The 3E/O requirements document

contains six full, double-spaced pages of inputs, most of which represent I-loaded thresh-

olds used to calculate the order and timing of the maneuver sequences. Nevertheless,

the sheer number of inputs is less problematic than their inherent complexity. Even a

simple model of the physics of the Shuttle's ascent is beyond the scope of this project.

The modeling strategy we developed is based on the following assumptions. First,

there is no need to confront head-on the inherent complexities of the real physical

world. For example, we care only whether the current altitude and altitude rate predict

an apogee altitude greater or less than the calculated altitude-velocity curve; the exact

values or physical laws involved are irrelevant for verifying sequencing properties. As a

result, we don't have to explicitly model the largely continuous values documented in

the requirements, but can instead use either qualitative ranges or booleans.

Second, we make the further simplifying assumption that there are no constraints

on the simultaneous values assumed by variables representing physical parameters, i.e.,

we ignore physical constraints between physical parameters and assume that all such

parameters are completely independent. For example, we make no attempt to capture

the relation between velocity and altitude. Although this is clearly naive, it is also

2In fact, experience suggests that ennumerating all behaviors of a downscaled system is a considerably
more effective debugging method than exploring some of the behaviors of the original system.
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overly general, implying that while we may consider too many cases, we do not overlook
any. 3

Finally, we largely ignore time, except for the implicit notion of time inherent in

an ordered sequence of events. These three assumptions provide a reasonably tractable

and accurate model of the 3E/O input space.

In addition, we reduce the large number of inputs by exploiting the fact that a

boolean-valued operation on two inputs is equivalent, as a sequencing constraint, to a

simple boolean variable. For example, the boolean expression used to determine if the

Shuttle has sufficient range to make it back to the runway checks whether the down-

range horizontal earth-relative velocity is strictly less than 0, and the difference between

the predicted and actual range capability is strictly greater than an I-loaded minimum

acceptable range difference, i.e., v_horiz_dnrng < 0 AND delta_.r > del_r_usp. The

value of the operation in each conjunct is either true or false, and hence for our purposes,

indistinguishable from that of a boolean-valued variable. In other words, as a sequenc-

ing constraint, this conjunction is equivalent to the expression: v_horiz_dnrng_LT_0

AND delta_r_GTR_del_r_usp, where each conjunct is reduced to a simple boolean vari-

able. By universally quantifying over these variables, we effectively show that for all

possible values of the two (original) expressions, certain properties hold. We use this

strategy for all inputs that represent the physical environment. Inputs that represent

the Shuttle's internal state, e.g., the flag that indicates whether contingency 3E/O has

been activated or the variable that encodes whether MECO has occurred, are modeled

as inputs. Another way to view the modeling approach taken here is that we define

a state transition system operating within a two-level context: a global environment

consisting of monitored variables for external physical aspects, i.e., variables represent-

ing sampled sensor values, and a local environment consisting of monitored variables

for Shuttle-internal physical aspects, i.e., variables representing the Shuttle's internal

status. This view is similar to the standard A-7 model [HKPS78, Hen80, vS90], except
that the distinction made here between "external" and "internal" environment variables

would probably not appear as such in a standard A-7 interpretation. 4

3.3 Finite-State Specification of Three-Engines-Out

Mur¢, the finite-state verifier used in this study was developed by David Dill and his

students at Stanford University [DDHY92, ID93] 5 and consists of the Mur¢ Compiler

and the Mur¢ description language for finite-state asynchronous concurrent systems,

Sin the context of finite-state verification, a technique which prides itself on being able to handle
very large (but finite) state spaces, it is far better to consider too many possibilities, than too few.

4 [vS90] distinguishes three types of environmental state variables: application, established and
hardware-dependent, but these distinctions are implementation-based, whereas ours reflect a somewhat
different bias.

5Mur¢ is named after the author of the irrefutable law which states that "The bug is always in the
case you didn't test."
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which is loosely-based on Chandy and Misra's Unity model [CM88] and includes user-

defined datatypes, procedures, and parameterized descriptions. A Mur¢ description

consists of constant and type declarations, variable declarations, rule definitions, start

states, and a collection of invariants. The Marc compiler takes a Mur¢ description and

generates a C++ program that is compiled into a special-purpose verifier that checks

for invariant violations, error statements, assertion violations, deadlock, and (in certain

versions) liveness. Mur¢ can be used as a verifier or as a simulator. The verifier attempts

to enumerate all possible states of the system and the simulator explores a single path

through the state space. In both cases, efficient encodings, including symmetry-based

techniques, and effective hash-table strategies are used to alleviate state explosion. To

date, we have used Marc exclusively as a verifier.

The 3E/O specification is written in two parts, one for each of the two main 3E/O

functions: region selection and contingency guidance. The region selection function is

quite small and was specified first in order to refine the modeling approach and analysis

strategy before tackling the considerably larger guidance function.

We illustrate the use of Marc to specify 3E/O with a somewhat abridged version of

the region-selection algorithm. We actually implemented two versions of this algorithm,

one in the so-called "protocol-style" which is highly nondeterministic and therefore

rather difficult to follow, and a more readily understood functional version, part of

which we present here.

To begin, we need a way of talking about variables that are not simple booleans.

As noted earlier, we would like to do this as abstractly as possible, using types that

range over qualitative rather than quantitative domains. Thus for the highly restricted

purpose of this specification, we need only three types of values for velocity: those

greater than a maximum threshold, those greater than a minimum threshold, and those

less than or equal to the minimum threshold. We use a similarly abstract domain

for dynamic pressure. The other two type definitions explicitly enumerate domains

representing the relevant flight modes and the maneuver regions. Since region 4 is not

assigned by the region selection function (for reasons discussed in Section 2.2.1), it does

not appear as an element of the domain of type region. The value regE denotes errors

and is introduced strictly to make it easier to track error states.

Type

velocity: enum{GTR_vi_3eo_max, GTR_vi_3eo_min, LEQ_vi_3eo_min};

dynamic_pressure: enum{GTR_qbar_reg3, GTR_qbar_regl, LEQ_qbar_regl};

major_mode: enum{mml02, mml03, -.-601};

region: enum{regE, regO, regl, reg2, reg3, regl02};

We also need a handful of global variables. The first four variables are flags indicating

whether a 3E/O contingency abort has been signaled, whether the SSMEs have been
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shut down (main engine cutoff is a necessary condition for ET separation), whether

a high-rate ET separation (i.e., maneuver region 2) has been signaled, and whether a

region has been assigned, respectively. Two other global variables are introduced: one

of type maj or_mode and one of type region.

Vat

cont_3E0_start,

meco_confirmed,

high_rate_sep,

region_selected: boolean;

m_mode: major_mode;

r: region;

We next define the basic region selection function. To conserve space in the pre-

sentation, we have not included declarations for the functions Nominal_Ascent and

RTLS__bort, referenced in reg_sel. Nominal__scent checks to see if the ascent is normal

and, if not, calls a function that assigns an appropriate maneuver region. RTLS_Abort

monitors the abort phase, reg_sel assigns a maneuver region based on the current flight

mode (re_mode) and the set of variables representing the prevailing physical conditions.

re_mode is a global variable nondeterministically set by rules (see below). The formal

parameters provide the external context that conditions the selection of the maneuver

region, several of which should be familiar from the previous discussion on modeling.

In the course of state exploration, reg_sel is called with all possible combinations of

values for these variables. The switch construct introduces a standard case expression.

Function reg_sel(vel:velocity; q_bar:dynamic_pressure;

delta_r_GTR_del_r_usp, v_horiz_dnrng_LT_O,

alpha_n_GTR_alphareg2,h_dotLThdotreg2,

apogee_alt_LTalt_ref:boolean): region;

Begin

Switch mmode

case mml02: r := regl02; cont_3EO start := true;

case mml03: r := Nominal Ascent_ck(vel,q_bar,apogee alt_LT alt ref,

alpha_n_GTRalpha_reg2,

h_dot_LT_hdot_reg2);

case mm601: r := RTLSAbort(qbar,v_horiz_dnrng_LT_O,

delta_r_GTR_del_r_usp, h_dotLT_hdotreg2,

alpha n_GTR alpha reg2);

Endswitch;

Return r;

Endfunction;
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The rule below uses the previously defined reg_sel function to assign an appropriate

region and, if conditions warrant and SSME cutoff has been confirmed, to initiate an

RTLS abort. Mute rules define nondeterministic state transitions. The boolean expres-

sion that precedes the arrow (=-->) defines a condition that characterizes the states under

which the body, i.e., the statements following the arrow, may be executed. The Ruleset

construct is syntactic sugar that generates a copy of the rules within its scope for every

value of the bound variable. For example, the variable re1 ranges over the enumerated

type velocity, and therefore can take on the following three values: GTR_vi_3eo_max,

GTR_vi_3eo_min, and LEQ_vi_3eoAnin. There is a single rule, Select Region, within

the scope of this ruleset, so the ruleset will generate three rules identical in all respects

except for the value of the variable vel. The deeply nested rulesets are used to gener-

ate all possible combinations of values for the variables that model the Shuttle's ascent

environment. As noted previously, this approach yields a complete, if overly simplistic,

model of the input space.

Ruleset vel: velocity Do

Ruleset apogee_alt_LT_alt_ref: boolean Do

Ruleset q_bar: dynamic_pressure Do

Ruleset h_dot_LT_hdot_reg2: boolean Do

Ruleset alpha_n_GTR_alpha_reg2: boolean Do

Ruleset v_horiz_dnrng_LT_O: boolean Do

Ruleset delta_r_GTR_del_r_usp: boolean Do

Rule "Select Region"

!cont_3E0_start

==>

Begin

r:= reg_sel(vel,q_bar,delta_r_GTR_del_r_usp,v_horiz_dnrng_LT_O,

alpha_n_GTR_alpha_reg2,h_dot_LT_hdotreg2,

apogee_alt_LT_alt_ref);

region_selected := true;

If meco_confirmed & r )= regO Then cont_3EO_start := true Endif;

Endrule;

Endruleset; -- delta_r

Endruleset; -- v_horiz

Endruleset; -- alpha

Endruleset; -- h_dot

Endruleset; -- q_bar

Endruleset; -- apogee

Endruleset; -- vel

The next set of rules illustrates the use of nondeterministic assignment to model

the input of state variables such as major_mode, meco_confirmed, and high_.rate_sep.

Note that these rules allow multiple assignments of the same mode, as well as a change
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of modes (from 103 to 601) to reflect the transition from a normal ascent to an abort

contingency, but correctly preclude the possibility of transitioning from a contingent
abort to a normal ascent state.

Rule "set mml03"

!cont_3EO_start & m_mode != mm601

==>

Begin

m_mode := mm103;

Endrule;

Rule "set MM601"

!cont_3E0_start

:=>

Begin

m_mode := mm601;

Endrule;

Rule "set meco_confirmed"

!cont_3E0_start & !m_mode = mml02 & !meco_confirmed

==>

Begin

meco_confirmed := true;

Endrule;

Rule "set high_rate_sep"

!cont_3E0_start & !high_rate_sep

==>

Begin

high_rate_sep := !high_rate_sep;

Endrule;

S_artstate is a special type of rule that is executed exactly once at the beginning of

a Mute execution. A startstate that assigns a value to every global variable is required

of all Mur¢ programs. Here, we need only initialize the (internal) state variables, since

the (external) environment variables are denoted by universally quantified variables in

Mur¢ rulesets. Note the use of undefine, an as yet undocumented Mur¢ feature that

at least partially relaxes the stricture that every global variable must be initialized. In

this case, we prefer to leave the value of region undefined until an appropriate region

is calculated, rather than introduce another element of the enumerated type (region).
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Startstate "Init"

Begin

cont_3EO_start := false;

m_mode := mm102;

meco_confirmed := false;

high_rate_sep := false;

region_selected := false;

Undefine r;

Endstartstate;

We model the basic mode sequencing properties of the Region Selection and Con-

tingency Guidance functions as state transition constraints and then show that if these

constraints are satisfied, key properties of the algorithms also hold. The key properties

are typically specified as invariants, i.e., expressions that must be true in all states, and

are illustrated in the following section.

3.4 Finite-State Analysis of 3E/O Sequencing

The 3E/O requirements document [Roc94] provides a procedural description of 3E/O,

but does not identify essential properties of the contingency abort functions. In order

to validate the Mur¢ specification, we derived a handful of properties that capture the

fundamental characteristics of mode sequencing intrinsic to 3E/O region selection and

contingency guidance. These derived properties fall into two categories: properties of

the form function X shall satisfy constraint Y, e.g., property 2 in Section 3.4.1 below,

and those of the form the outputs of function X shall obey constraint Y, e.g., property 1
below.

We have approached 3E/O mode-sequencing as a constraint satisfaction problem,

but it is worth noting that the sequencing constraints we are exploring constitute a

partial order on the modes, i.e., any two comparable modes are ordered by a precedence

relation that is reflexive, antisymmetric, and transitive. For example, the constraint

that a MECO confirmation check must precede a contingency abort command can be

expressed as meco < cont_ab, where < denotes the relation "precedes or co-occurs,"

and transitivity ensures that

(region_select _<meco A meco <_cont_ab) -_ region_select <_cont_ab.

3.4.1 General Properties of Contingency Abort Sequencing

The contingency abort algorithms are functional, i.e., each set of inputs maps to a

unique output - either a maneuver region in the case of Region Select or an abort
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maneuver in the case of Contingency Guidance. Additionally, each contingency abort

function is defined by a prescribed sequence of calculations, wholly determined by the
Shuttle's external environment and internal state.

1. For each possible set of inputs, there is exactly one contingency abort output

defined by exactly one sequence of calculations.

2. The sequence of calculations that defines a contingency abort output is always

executed in the prescribed order.

We can instantiate these properties for each of the two major Contingency Guidance
functions, as shown below.

3.4.2 Essential Properties of Region Selection Sequencing

1. On each invocation, Region Selection shall assign and output exactly one maneuver
region.

2. Region Selection shall assign a maneuver region according to a fixed sequence of
calculations.

3. Region Selection shall initiate a contingency abort for region 102, and, if main-

engine cutoff has been confirmed, for regions 1, 2, and 3.

Property 1 states the basic premise of Region Selection, namely this function always

calculates and outputs a region. Additionally, we require that the assigned region be

one of: region 0, 102, 1, 2, 3, or E, and that these regions be distinct. In theory, these

two properties should follow from the enumerated region type

region: enum{regE, reg0, regl, reg2, reg3, regl02};

but to be certain, we explicitly state the following two invariants.

Invariant "regions are pairwise disjoint"

(regE != regO & regE != regl & regE != reg2 & regE != reg3 &

regE != reg102 & regO != regl & regO != reg2 & regO != reg3 &

regO != regl02 & regl != reg2 & regl != reg3 & regl != regl02 &

reg2 != reg3 & reg2 != reg102 & reg3 != regl02);

Invariant "regions are exhaustive"

(forall r:region (r=regE I r=regO I r=regl [ r=reg2 1

r=reg3 [ r=regl02));
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Property 2 states that the prescribed order of calculation is respected when assigning

regions. This property follows by inspection of the Mur¢ constraints encoded in the rules

and in If..then..else statements that constitute the bodies of the Mur¢ functions

for region selection. Property 3 is a particular instance of Property 2 and states that

a contingency abort is initiated only after an abort maneuver region has been selected

and MECO has been confirmed. We typically establish specific properties of this kind

through invariants. The two forms of the invariant shown below are equivalent, although

the invariant form is usually more efficient because the Mur¢ compiler can exploit

restricted properties explicitly identified as invariants. The error statement, Error,

generates a run-time error.

Invariant "cont_3EO_start"

cont_3EO_start ->

((m_mode--mml02 ] meco_confirmed) & !Isundefined(r) & r!=regO);

Rule "alternate invariant cont_3EO_start"

!(cont_3EO_start ->

((m_mode--mml02 I meco_confirmed) & !Isundefined(r) & r!=regO))

==>

Error "Invariant violated: alternate invariant cont_3EO_start"

Endrule;

Additional invariants were used to debug the specification and to explore implica-

tions of the requirements, e.g., by checking for suspected anomalies. For example, we

suspected that a region 0 assignment could persist from one cycle to the next, result-

ing in failure to detect changes that would ordinarily trigger an abort maneuver. To

test this hypothesis, we output the error region, regE, whenever we detected a region

0 assignment that did not satisfy the necessary constraints and added a simple invari-

ant stating that regE never occurs. This strategy is equivalent to stating the following
invariant

(r = regE) -> !((m_mode = mml03 & (vel = GTR_vi_3eo_max i

(vel = GTR_vi_3eo_min & apogee_alt_LT_alt_ref))) I

(m_mode = mm601 & v_horiz_dnrng_LT_O a

delta_r_GTR_del_r_usp)))

The resulting error trace is reproduced below. The trace illustrates nicely the type

of debugging information provided via counterexamples generated by finite state veri-

fication techniques. Note the final (anomalous) state in which delta_.v_GTR_del_r_usp

becomes false during a presumably normal RTLS abort (flight mode 601). This cor-

responds to a scenario in which an RTLS abort has been invoked, but the fact that

the Shuttle lacks sufficient range for an intact RTLS abort is not detected or signaled.
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Although there is no possibility of an intact RTLS with three engines out, failure to

detect or signal accurate range information could potentially further jeopardize crew
safety.
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Invariant no pathological region 0 cycles failed.

Startstate Init fired.

cont_3E0_start : false

meco_confirmed : false

high_rate_sep : false

region_selected : false

m_mode:mml02

r:Undefined

Rule set MM601 fired.

cont_3E0_start : false

meco_confirmed : false

high_rate_sep : false

region_selected : false

m_mode:mm601

r:Undefined

Rule Select Region, vel:GTR_vi_3eo_max, apogee_alt_LT_alt_ref:true,

v_horiz_dnrng_LT_0:true, delta_r_GTR_del_r_usp:true,

q_bar:GTR_qbar_reg3, h_dot_LT_hdot_reg2:true,

alpha_n_GTR_alpha_reg2:true fired.

cont_3E0_start : false

meco_confirmed : false

high_rate_sep : false

region_selected : true

m_mode:mm601

r:reg0

Rule Select Region, vel:GTR_vi_3eo_max, apogee_alt_LT_alt_ref:true,

v_horiz_dnrng_LT_0:true, delta_r_GTR_del_r_usp:false,

q_bar:GTR_qbar_reg3, h_dot_LT_hdot_reg2:true,

alpha_n_GTR_alpha_reg2:true fired.

cont_3EO_start : false

meco_confirmed : false

high_rate_sep : false

region_selected : true

m_mode:mm601

r:regE

End of the error trace.
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The error reflected in this trace initially appeared significant, given that the algo-
rithm fails to detect and signal two anomalous RTLS scenarios: the situation reflected

in the error trace, where the Shuttle lacks suffient range for an intact abort, and the sit-

uation where the vehicle is heading away, rather than toward, the landing site. Checking
with the RA responsible for this function, we learned that the termination criteria for

this task specify that the Contingency Abort function terminates if region 0 is assigned.

Apparently the fact that the algorithm currently checks each cycle for a region 0 assign-

ment from the previous cycle is misleading and indicates a questionable redundancy in
the requirements, rather than a serious oversight.

3.4.3 Essential Properties of Contingency Guidance Sequencing

The properties enumerated for contingency guidance similarly reflect the general charac-
teristics of 3E/O Contingency Abort sequencing. The basic order of calculation follows

the two main guidance phases: pre-ET separation and post-ET separation. In the

pre-ET phase, additional ordering constraints are imposed by the operative maneu-

ver region. In the post-ET phase, the maneuver region is irrelevant and the ordered

sequence includes -Z translation calculations, entry maneuver calculations, and com-

manded transition to flight mode 602. For clarity, we specify the basic functions of

the guidance algorithm separately from the sequencing constraints. Since the analysis

strategy for contingency guidance is identical to that for region selection, we list these
properties without further discussion.

• On each invocation, contingency guidance shall calculate and output commands

for exactly one contingency abort maneuver.

• Contingency Guidance shall calculate an abort maneuver according to a fixed
sequence of calculations.

• Contingency Guidance shall command an ET separation.

• Contingency Guidance shall command at most one interconnected OMS dump.

• Contingency Guidance shall calculate and output an entry maneuver.

• Contingency Guidance shall command a transition to glide RTLS (flight mode
602).

• The transition to mode 602 shall not occur until the entry maneuver has been
calculated.

• The entry maneuver calculations shall not commence until the OMS/RCS inter-
connect, if any, is complete.

• The OMS dump shall not be considered until the -Z translation is complete.
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• Completion of -Z translation shall not be checked until ET separation has been
commanded.

• ET separation shall be commanded if and only if an abort maneuver region is

assigned.

3.5 Findings

The finite-state specification and analysis of 3E/O produced the set of issues enumer-

ated below in Sections 3.5.1 and 3.5.2. These issues represent the usual collection of

undocumented assumptions, inconsistent and imprecise terminology, redundant calcula-

tions, missing initializations, interface anomalies, and logical errors invariably exposed

through the process of formalizing and analyzing requirements. Predictably, the signif-

icance of the issues varies. Of the approximately 20 issues listed below and reported

to the 3E/O requirements analyst (RA), roughly one-third were noted and will appear

in an upcoming Documentation (Errata) CR. Other issues that we felt impacted the

clarity and precision of the requirements, including implementation bias and redundant

calculations (cf. Section 3.5.3), were not considered important by the RA. The logical

error listed in item 2 of Section 3.5.2 represents a significant error in the requirements

that was also discovered by the existing requirements analysis process. To our knowl-

edge, the other issues listed below had not been previously discovered.

3.5.1 3E/O Region Selection Task Findings

. Anomaly in the algorithm on cycles in which no abort is signaled: the algorithm

currently checks each cycle for a nominal ascent pattern that precludes the need

for abort procedures (region 0). The termination criteria for this task imply that

the algorithm will never be reentered if region 0 is assigned, in which case the

region 0 check is unnecessary. 6

. Redundancy in the algorithm after a high rate separation is commanded: assuming

that the command cannot be rescinded on subsequent cycles, the corresponding

region doesn't need to be recalculated each cycle, as is currently the case.

. Inconsistent initialization of output parameters: some are initialized, others are

not. For example, ALT_APOGEE and ALT.REF are initialized, but T_DEL, G, and

RTLSA, BORT_DECLAREDare not. If these output parameters are initialized by other

functions, that information is not currently documented in 3E/O.

4. Unstated Assumption: MECO must be confirmed for region 102 before a contin-

gency abort is initiated.

6More precisely, the exit should be restored to step 5 and step 6 should be eliminated.
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5. Inconsistencies between informal description and stated algorithm, e.g.:

• The informal description says "If the apogee altitude is above this curve, a

contingency abort capability is still required." The algorithm checks whether

the apogee altitude is strictly less than the computed altitude-velocity curve.

• The informal description says "If the vehicle is heading back towards the

landing site, and the current range is greater than an I-loaded value, a 3E/O

region index is calculated." The algorithm calculates a region index if the

current range is less than or equal to the I-loaded value.

6. Ambiguities in the informal English description; e.g.,

• "Otherwise, the 3E/O field is blanked out and no further contingency abort

calculations will be performed." This is ambiguous; no further calculations

are performed on this cycle or on this and (all) subsequent cycles?

• "After SRB separation, on every pass that the 3E/O region index is calcu-

lated, a check is made to see if MECO confirmed has occurred. If so, a check

is made to see if the major mode is 103. If so, an RTLS is automatically

invoked to transition to major mode 601. A 3E/O contingency start flag is

then set ..." The description is ambiguous and could be interpreted to mean

the contingency flag is set only if the major mode is 103.

7. Omissions from the algorithm or informal English description; e.g.,

• The algorithm indicates that a display is updated, but fails to mention which

of the relevant displays should be changed.

• The informal English description has not been updated to reflect modifica-

tions to parameters DELTA_R and DEL.R_USP.

3.5.2 3E/O Contingency Guidance Task Findings

. Interface anomaly: while there is an explicit transition to an RTLS abort mode

(that signals termination of 3E/O) in all other regions, there is no such transition

for a first stage abort. The reason for this anomaly: existing requirements and

code used functions external to 3E/O to command the RTLS transition for first-

stage aborts and these existing requirements were not modified when they were

"integrated" into the current requirements.

. Logical error: If a Region 2 ET separation is downmoded to a Region 1 separation

in Step 23, the pitch rate, i.e., output variable WCB2, will not be set to appropriately

reflect the downmode. The problem is particularly acute if the downmode occurs

after the first pass, because commanded region 2 pitch rates continue when they

should in fact be zeroed for region 1.
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3. Unnecessary entry maneuver calculations: Step 22 calculates a region 2 quater-

nion before Step 23 checks to see if conditions dictate a downmode to region 1.

Since region 1 maneuvers are attitude-independent, the calculation is not used if

a downmode is required.

4. Unstated Assumptions:

• The variable ET_SEP_AN_INITIATE is set both internal and external to 3E/O.

If it is set externally, it is possible to exit 3E/O via a region 1 maneuver

without setting output variable FRZ_3EO (cf. Step 28). Apparently only the

crew can cause this and the assumption is that under these circumstances,

the crew will also take responsibility for attitude control.

• In Step 6, the algorithm checks for REGION 102 and for REGIONS 1-4. and

exits if it detects any other region assignment. In fact, any other region

assignment is an error, but the assumption is that testing and inspection

will ensure that only correct region values are used and that Step 5, which

guarantees an emergency separation if all else fails, will catch any remaining

region-assignment errors.

• After ET separation, dynamic pressure permitting, a onetime only intercon-

nected OMS dump is performed following completion of the -Z translation.

However, due to timing constraints, this dump is not performed if ET sep-

aration occurs in first stage. The algorithm currently initiates the dump

maneuver prior to checking for a first-stage abort. As a result, the delay

in the main propulsion system LO2 dump is zeroed, regardless of whether

a first-stage ET separation has occurred and the dump is precluded. The

operative assumption is that all region 102 post-ET separation dumps will

be inhibited, but this appears inconsistent with zeroing the LO2 dump delay.

• Output parameters, including ET_SEP_AN_INITIATE and ETSEP_Y_DRIFT,

that are not initialized in Contingency 3E/O Guidance are apparently as-
sumed to be initialized elsewhere.

5. Inconsistencies between informal description and stated algorithm, e.g.:

• The informal English description in Steps 8 and 9 does not make it clear that

these steps must be performed one time only in lockstep, i.e., on the same

cycle.

• In Step 14, the English reads in part: "[if the] MET has exceeded an I-loaded

value..." while the pseudo-code test checks for =>. Actually, the pseudo-

code no longer checks MET, but the difference between the current running

GMT (Greenwich-Mean-Time) and the GMT associated with liftoff, so the

English needs to be updated in both respects.

• The definition in the Table 4.10.1-1 entry for P__MAX.REG1states "Maximum

pitch rate... ," but it should read "Maximum roll rate..."
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• Similarly, The definition in the Table 4.10.1-1 entry for Q__INUS_Z_AX states

"Maximum pitch rate for MM102-to-MM602 transition," but it should read
"Maximum pitch rate for immediate MM602 transition. ''7

6. Ambiguities in the informal English description; e.g.,

• The conjugate of the VR-to-M50 quaternion is not Q__50_VR (as the descrip-

tion and parentheses suggest), but rather Q_VR._50.

3.5.3 Desirable Characteristics of 3E/O Algorithms

The findings enumerated above suggest certain characteristics that a "good" set of

3E/O requirements should exhibit. First, the requirements should specify that the con-

tingency guidance algorithm calculate all and only necessary maneuvers. Assuming the

current requirements are updated to correct the logical error responsible for failure to

recalculate the ET separation maneuver following a downmode from region 2 to region

1 (cf. Section 3.5.2, item 2), the requirements appear to correctly specify calculation

of all necessary maneuvers. However, the requirements also specify several unnecessary

calculations, including 2 (Section 3.5.1) and 3 (Section 3.5.2). According to the 3E/O

requirements analyst, these redundant calculations are not considered important be-

cause the shuttle currently uses only around 50% of the available compute cycles. How-

ever, the fact that the requirements assume the availability of compute cycles suggests
an underlying implementation bias that distracts attention from the more fundamental

nature of these algorithms. Thus a second desirable characteristic of a good set of 3E/O
requirements is that the algorithm should focus on essential properties and behaviors

and avoid implementation considerations.

A third and final desideratum is that the requirements should consistently maintain

and explicitly state all underlying assumptions. For example, the current requirements

for the region selection algorithm specify that before a contingency abort can be initi-

ated, MECO must be confirmed. This confirmation is explicitly checked for all abort

regions except region 102. Why isn't MECO confirmed for region 102 and what is the

underlying requirement? In fact, the underlying requirement is exactly what you would

expect: MECO must be confirmed in all abort regions before a contingency abort can

be signaled. The confirmation is implicitly assumed rather than explicitly checked for

major mode 102 ("first-stage') aborts because in first-stage aborts, region selection is

executed (only) after MECO has been confirmed. 8 This is a nice example because it

not only illustrates the type of implicit assumption frequently underlying these require-

ments, it also provides a clear, simple example of how implementation-level detail and

7Ron Avery pointed out the definition for R_.HINUS_Z_MAX, as well as for Q_NI14US_Z.._AX, should read

"maximum... rate for resuming active attitude control in region 102 -Z maneuver."

SWe suspect that this is another instance where existing requirements for region 102 were retrofitted

into the current requirements without documentation or modification. As a result, implicit assumptions,

special-case interfaces, and implementation considerations tend to mask the basic functionality that

region 102 shares with the other abort-regions.
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inconsistent functional interfaces can obscure the real requirements. To capture the re-

quirements as given, the invariant would have to reflect the special case for region 102,

i.e.,

cont_3EO_start --_(m_mode = mml02 V meco_confirmed),

obscuring the essentialproperty of the contingency guidance algorithm, namely-that

cont_3EO_start --_meco_confirmed.



Chapter 4

Discussion

In this final chapter we briefly explore how the current study relates to other work

in this area, review the limitations of the method, and anticipate directions for future
work.

4.1 Relation to Other Work

Although this work draws on several different formal-methods techniques, there is virtu-

ally no published work that is directly comparable. As noted in Section 3.1, finite-state

verification techniques have been around for approximately twenty years, but have been

used almost exclusively to verify hardware and software implementation of control algo-

rithms such as communication and cache coherence protocols. As far as we've been able

to determine, only one other application to the domain of software requirements has

been documented. Atlee and Gannon [AG93] describe a largely automated technique

for transforming tabular, SCR-style requirements [HKPS78] such as those used in [vSg0]

into a finite-state machine analyzable by the CTL model checker [CES86, McM93]. The
technique is used to analyze safety properties of two examples, each with a small set of

environmental conditions: an automobile cruise control system and a water-level mon-

itoring system. The major difference between their approach and ours, aside from the

nature and scale of the respective application domains, is the fact that their approach

has been refined into an automated process and focuses on one style of requirements

specification (SCR) entailing an explicit modeling bias, whereas our approach is manual

and agnostic with respect to style of requirements specification and modeling strategy.

There is also little precedent for modeling continuous physical domains, such as

the Shuttle ascent environment, since these domains are notoriously complex and not

considered good candidates for current formal-methods techniques. Boyer, Green, and

Moore discuss an initial investigation into applying formal methods to programs that

interact with environments using a very simple example: "steering a vehicle down a

31
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straightline course in a crosswind that varies with time" [BGM82, 3], but apparently

have not pursued this or similar examples on a more realistic scale.

Our use of qualitative values for physical entities is reminiscent of techniques used in

certain subfields of Artificial Intelligence such as Qualitative Physics [WdK90] for mod-

eling and reasoning about the physical world, but the analogy ends there. Our approach

also differs from the simulation and scenario generation used extensively in industrial

applications, including Shuttle requirements analysis (cf. Section 2.3), because state-

exploration is exhaustive, checking all possible paths through the state space, whereas

simulation and scenario generation test extensively, but are inherently non-exhaustive.

4.2 Limitations of the Method

There are two distinct, but related limitations to the approach taken in this study.

First, developing a Mur¢ specification differs very little from writing a program in

a conventional programming language. As a result, it is difficult to regard a Mur¢

specification as an intellectually compelling verification of the desired properties. This

limitation is compounded by a second factor: the utility of a nondeterministic, rule-

based notation is inherently more analytic than descriptive. Unlike a PVS requirements-

level specification that provides a clear, unambiguous description that is potentially

useful for formal calculation, informal analysis, reviews, inspections, and documentation,

a Mur¢ specification is not an effective descriptive document. In other words, although

the rule-based Mur¢ notation is an excellent vehicle for exhaustively analyzing the

behaviors of finite-state systems and for checking their properties, it is a decidedly poor

vehicle for communicating and documenting these systems and their properties.

4.3 Future Work

There is currently a great deal of interest in integrating various Formal Methods tech-

niques to provide effective and efficient design and verification environments for complex

systems. Combining general, but labor-intensive theorem proving techniques with the

domain-specific, but highly automatic finite-state verification paradigm appears to be a

promising approach. As discussed in [RSS95], several formal methods systems integrate

model-checking and proof-checking, although to date there have been few, if any, truly

effective integrations of these complementary technologies. Despite the shortcomings

noted above, finite-state verification is a particularly useful tool for debugging formal

specifications because of its speed, high-degree of automation, and ability to generate

counterexamples. As noted at the end of Section 3.4.2, these failure traces, i.e., paths

through the state space that terminate due to run-time errors, can be extremely useful

for correcting and refining a specification. Used in conjunction with a richer, more flex-

ible specification language and an automated theorem prover, the very real benefits of

this technique can be exploited, while avoiding its weaknesses.
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Exploring effective ways of integrating MurC-style state exploration with PVS-style

specification and theorem checking is an example of this hybrid approach. There is

already a BDD-based model-checker for the propositional mu-calculus available as a

decision procedure within the PVS proof checker [RSS95]. There is also an experimental,

automated translation from Mute to PVS and the reverse translation is under study.

These translations will ultimately further automate integrated approaches in which

properties that can be efficiently checked with state exploration and properties that

require more general theorem-proving capabilities are both accommodated within a

single system. We are also exploring largely manual points of integration, including

the use of the PVS table construct to complement state-exploration, thereby providing

perspicuous documentation, as well as the ability to explore additional properties of the

3E/O contingency abort function.

4.4 Concluding Remarks

The discipline of formal specification and analysis is invariably productive and the 3E/O

study is no exception. The process of formally specifying the 3E/O requirements has ex-

posed the usual collection of undocumented assumptions, logical errors, and inconsistent

and imprecise terminology. Most of the errors were found in the process of scrutinizing
and trying to understand the requirements document, but the finite-state verification

provided additional assurance as well as documented counterexamples. Mur¢ was par-

ticularly useful for exploring the large input space and verifying that assumptions about

the cyclic behavior of the 3E/O Guidance Task were well-founded.

The 1993 assessment of Shuttle flight software development practices cited at the

beginning of this report recommends that "... software safety programs must take ad-

vantage of state-of-the-art techniques and leading edge methodologies to build safety

into the software and the system while enhancing software development capabili-

ties." [NAS93, p. 91] Finite-state verification merits further study as we explore tech-

niques, methodologies, and the integration of complementary paradigms for improving

Space Shuttle flight software development.
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